

Gliricidia sepium locally known as "kakawate" served as live trellis "balag" / or anchorage for annual crops and erosion control measure. (Mr. Baldwin Pine)

Highly Diversified Cropping in Live Trellis System (Philippines)

Kakawate as live trellis "balag'

DESCRIPTION

Gliricidia sepium locally known as "kakawate" served as live trellis / or anchorage for annual crops (mostly creeping-type vegetables) and erosion control measure. The technology is well-adopted in the community providing immediate food for the farmers and increased income due to diversified farming.

The Highly Diversified Cropping in Live Trellis System is a traditional or local farmers' initiative technology widely practiced in Brgy. Bukal, Nagcarlan, Laguna situated in the area of Mt. Banahaw. The area with rolling to hilly terrain is receiving an annual rainfall of 1000-2000 mm. Each of the farmers who practiced the technology has 0.5 to 1.0 ha production area. Moreover, the community is accessible to infrastructures such as schools and market. Soils in the area is relatively good for agriculture cultivation. Kakawate, a small to medium-sized, thornless tree which usually attains a height of 10-12 m is being used as live trellis or "balag" to various annual crops such as tomato, cucumber, chayote, beans, and ampalaya in the community. The cropping system is highly diversified since crop rotation is being practiced throughout the year. Aside from being an anchorage for annual crops, kakawate also stabilizes sloping lands and reduces soil erosion due to its strong roots which can grow 3-5 meters laterally, thereby holding the soil firmly. They are planted in a row of approximately 2-3 meters making it more effective in preventing soil erosion. Furthermore, kakawate is being trimmed and maintained every 3-6 months or as needs arise to a approximate 3 meters high as live trellis, the trimmed leaves are very rich in nitrogen and will eventually serve as compost or crop cover. These will help in improving soil quality and moisture in the soil. In addition, kakawate has multiple uses and benefits; they can serve as hardwood or firewood when matured, as materials in making furniture and anchorage for flowering plants like orchids. In establishing the live trellis system, kakawate trunks/or cuttings "quick sticks" with at least 2-meter height are planted in a row. An estimate of 0.5 to 1 meter planting distance within a row and also between rows is used. When the kakawate trunks are already set up and planted, they are interconnected using a metallic wires. Along these wires, plastic straws are tied in a vertical position whereby crops can utilize this straws for creeping/ climbing . Finally, the desired crop will be planted according to their cropping pattern. Maintenance of the technology includes: weeding and trimming. During infestation, application of pesticide is done but in minimal. The technology requires manual works resulting to elimination of machines that contributes to soil compaction. The technology has been a practice in the community for a long time, and land users continue to adopt the technology because of it's easiness and inexpensiveness to establish, and low cost in terms of maintenance activity. Adding up to this is the variety of plants to be grown, making their market more profitable. Gliricidia normally grows in tropical countries like the Philippines and is being utilized as hedgerows for erosion control measures. Over the years, its effectiveness as erosion control is known, and an increasingly used forage crop in cut-and-carry systems.

LOCATION

Location: Brgy. Bukal, Nagcarlan, Laguna, Philippines

No. of Technology sites analysed: single site

Geo-reference of selected sites121.44696, 14.07943

Spread of the Technology: evenly spread over an area (approx. 1-10 km2)

Date of implementation: 1950; more than 50 years ago (traditional)

Type of introduction

- through land users' innovation
 as part of a traditional system (> 50 years)
- during experiments/ research through projects/ external interventions

Live trellis system widely practiced in Brgy. Bukal, Nagcarlan, Laguna (Mr. Baldwin Pine)

CLASSIFICATION OF THE TECHNOLOGY

Main purpose

- ✓ improve production
- reduce, prevent, restore land degradation
- conserve ecosystem
- protect a watershed/ downstream areas in combination with
- other Technologies
- preserve/ improve biodiversity
- reduce risk of disasters
- 🔽 adapt to climate change/ extremes and its impacts
- mitigate climate change and its impacts
- create beneficial economic impact
- 🗸 create beneficial social impact

Purpose related to land degradation

- prevent land degradation
 reduce land degradation
 - reduce land degradation
 - restore/ rehabilitate severely degraded land adapt to land degradation
- not applicable

SLM group

- agroforestry
- improved ground/ vegetation cover
- integrated soil fertility management •

TECHNICAL DRAWING

Technical specifications

Kakawate cuttings are planted with an estimated planting distance of 0.5 m to 1 m. They are trimmed and maintained at around 3 meters high for every 3-6 months or as needs arise. In between the kakawate are annual crops like tomato, chayote, beans, cucumber, lettuce and cabbages which are planted in rotation depending on the season.

Under the live trellis are lettuce grown in the area as part of crop rotation practice (Mr. Baldwin Pine)

Land use

Cropland - Annual cropping Main crops (cash and food crops): Sayote, beans, tomato, cabbage,lettuce

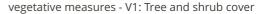
Mixed (crops/ grazing/ trees), incl. agroforestry -Agroforestry Main products/ services: Kakawate

Water supply

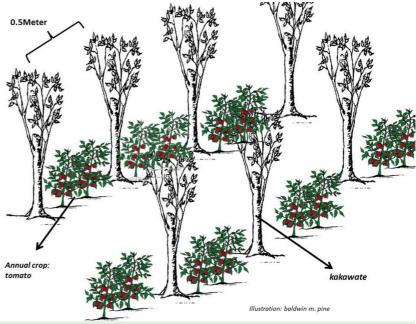
🗸 rainfeḋ mixed rainfed-irrigated full irrigation

Number of growing seasons per year: 3 Land use before implementation of the Technology: n.a. Livestock density: n.a.

Degradation addressed



soil erosion by water - Wt: loss of topsoil/ surface erosion, Wo: offsite degradation effects


SLM measures

agronomic measures - A1: Vegetation/ soil cover, A2: Organic matter/ soil fertility, A3: Soil surface treatment

Wocat SLM Technologies

Most important factors affecting the costs

Author: Baldwin M. Pine

n.a.

ESTABLISHMENT AND MAINTENANCE: ACTIVITIES, INPUTS AND COSTS

Calculation of inputs and costs

- Costs are calculated: per Technology area (size and area unit: 0.5 hectare)
- Currency used for cost calculation: Philippine Peso (Php)
- Exchange rate (to USD): 1 USD = 50.0.
- Average wage cost of hired labour per day: 300.

Establishment activities

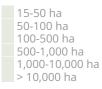
- 1. Clearing of the area (Agronomic; As needs arise or before planting of kakawate and annual crops)
- 2. Planting of kakawate cuttings (Vegetative)
- 3. Installation of metal wire and plastic straws (Agronomic)
- 4. Planting of annual crop: tomato (Agronomic)
- 5. Planting of annual crop: cucumber or beans (Agronomic)
- 6. Planting of annual crop: chayote (Agronomic)

Establishment inputs and costs

Specify input	Unit	Quantity	Costs per Unit	Total costs per input	% of costs borne by land users
Labour					
Manual labour: Weeding	person-days	3.0	300.0	900.0	100.0
Manual labour: Planting	person-days	3.0	300.0	900.0	100.0
Manual labour: Fertilizer Application	person-days	3.0	300.0	900.0	100.0
Manual labour: Harvesting and Hauling	person-days	3.0	300.0	900.0	100.0
Plant material					
Kakawate cuttings (cuttings are abundant in the area and not for sale)					100.0
Tomato @ 100grams per can	can	1.0	1950.0	1950.0	100.0
Cucumber @ 100grams per can	can	1.0	600.0	600.0	100.0
Chayote (seeds are abundant in the area)					100.0
Fertilizers and biocides					
Inorganic fertilizer: Urea	bag	5.0	1500.0	7500.0	100.0
Organic fertilizer: chicken dung	bag	5.0	450.0	2250.0	100.0
Pesticide	bottle	1.0	280.0	280.0	100.0
Construction material					
Metal wire (can be used for a long time, up to 10 years life span	roll	6.0	480.0	2880.0	100.0
Śtraw	roll	10.0	100.0	1000.0	100.0
Total costs for establishment of the Technology			20060.0		

Maintenance activities

- 1. Weeding (Agronomic; As needs arise but normally twice per cropping per crop)
- 2. Trimming of kakawate (Vegetative)
- 3. Application of organic fertilizer (Agronomic)
- 4. Application of inorganic fertilizer (Agronomic)


5. Spraying of pesticide (Agronomic)

Maintenance inputs and costs

Specify input	Unit	Quantity	Costs per Unit	Total costs per input	% of costs borne by land users
Labour					
Weeding	person-days	3.0	300.0	900.0	100.0
Trimming of kakawate	person-days	3.0	300.0	900.0	100.0
Application of organic fertilizer	person-days	3.0	300.0	900.0	100.0
Application of inorganic fertilizer	person-days	3.0	300.0	900.0	100.0
Equipment					
Spraying of pesticide	person-days	3.0	300.0	900.0	100.0
Total costs for maintenance of the Technology			4500.0		

NATURAL ENVIRONMENT			
Average annual rainfall < 250 mm 251-500 mm 501-750 mm 751-1,000 mm ✓ 1,001-1,500 mm 2,001-3,000 mm 3,001-4,000 mm > 4,000 mm	Agro-climatic zone ✓ humid sub-humid semi-arid arid	Specifications on climate Average annual rainfall in mm: Rainfall is evenly distributed th	
Slope flat (0-2%) gentle (3-5%) moderate (6-10%) ✓ rolling (11-15%) → hilly (16-30%) steep (31-60%) very steep (>60%)	 Landforms plateau/plains ridges mountain slopes hill slopes footslopes valley floors 	Altitude 0-100 m a.s.l. ✓ 101-500 m a.s.l. ✓ 501-1,000 m a.s.l. 1,001-1,500 m a.s.l. 2,001-2,500 m a.s.l. 2,501-3,000 m a.s.l. 3,001-4,000 m a.s.l. > 4,000 m a.s.l.	Technology is applied in convex situations concave situations not relevant
Soil depth very shallow (0-20 cm) shallow (21-50 cm) ✓ moderately deep (51-80 cm) deep (81-120 cm) very deep (> 120 cm)	Soil texture (topsoil) ✓ coarse/ light (sandy) medium (loamy, silty) ✓ fine/ heavy (clay)	Soil texture (> 20 cm below surface) coarse/ light (sandy) medium (loamy, silty) fine/ heavy (clay)	Topsoil organic matter content high (>3%) medium (1-3%) low (<1%)
Groundwater table on surface < 5 m 5-50 m > 50 m	Availability of surface water excess ✓ good medium poor/ none	Water quality (untreated) good drinking water poor drinking water (treatment required) for agricultural use only (irrigation) unusable	Is salinity a problem? Yes No Occurrence of flooding Yes No
Species diversity ✓ high medium low	Habitat diversity high medium low		
CHARACTERISTICS OF LAND Market orientation subsistence (self-supply) ✓ mixed (subsistence/ commercial ✓ commercial/ market	 USERS APPLYING THE TECHN Off-farm income less than 10% of all income 10-50% of all income > 50% of all income 	OLOGY Relative level of wealth very poor poor ✓ average rich very rich	Level of mechanization ✓ manual work animal traction mechanized/ motorized
Sedentary or nomadic Sedentary Semi-nomadic Nomadic	Individuals or groups individual/ household groups/ community cooperative employee (company, government)	Gender ✓ women ✓ men	Age children youth ✓ middle-aged ✓ elderly
Area used per household < 0.5 ha ✓ 0.5-1 ha 1-2 ha 2-5 ha 5-15 ha	Scale ✓ small-scale medium-scale large-scale	Land ownership state company communal/ village group individual, not titled	Land use rights open access (unorganized) communal (organized) leased ✓ individual Water use rights

Highly Diversified Cropping in Live Trellis System

open access (unorganized) communal (organized) leased individual

Access to services and i	nfrastructure	
health	poor	🗸 good
education	poor	🗸 good

technical	poor	🗸 good
assistance		
employment (e.g. off-farm)	poor	✓ good
markets	poor	🗸 good
energy	poor	🗸 good
roads and	poor	🗸 good
transport		
drinking water and	poor	🗸 good
sanitation		
financial services	poor 🗸	good

	IMPACTS	- BENEFITS AND	DISADVANTAGES
--	---------	----------------	---------------

Socio-economic impacts			
Crop production	decreased	✓ increased	An increase in production due to crop diversification
crop quality	decreased	✓ increased	· · · · · · · · · · · · · · · · · · ·
			Organic farming is a common practice in the community, and with this, it aids in the development of crop quality.
odder production	decreased	✓ increased	
			Kakawate are being utilized as forage crop for ruminants in the area.
odder quality	decreased	✓ increased	Kakawate is rich in Nitrogen.
wood production	decreased 🗸	increased	
			Kakawate when matured can be utilized as firewood and materials for making furnitures.
product diversity	decreased	✓ increased	making furnicules.
			Crop rotation makes the technology diverse.
production area (new land	decreased	✓ increased	
under cultivation/ use)	hindered	simplified	The area is maximized for cultivation at a minimum soil disturbance.
and management expenses on agricultural	increased	decreased	
nputs		decreased	The application of inorganic fertilizer is minimal due to organic farming.
arm income	decreased	✓ increased	
		_	Farmers' income is increased due to crop diversicification
diversity of income sources	decreased	✓ increased	Farmard income is increased due to even diversitiestion
			Farmers' income is increased due to crop diversicification.
Socio-cultural impacts	reduced	improved	
ood security/ self-sufficiency SLM/ land degradation	reduced 🗸	improved	
knowledge	leadeed	v improved	The continued adoption of the technology testifies that SLM and/land
			degradation knowledge is improved in the community.
Ecological impacts			
soil moisture	decreased 🗸	increased	
			Kakawate when left on the ground aids in the improvement of soil moistur
soil cover	reduced	✓ improved	
soil loss	increased	✓ decreased	Crop rotation practice improves soil cover.
50111055	increased	Vuccreased	Over the years, kakawate is proven to be an effective erosion control
			measure in the sloping areas.
soil compaction	increased	✓ reduced	
			Manual cultivation aids in minimal disturbance of the soil, thereby does no
soil organic matter/ below	decreased	✓ increased	contribute to soil compaction in the area.
ground C	uccicasca	V Increased	Organic farming is a practice in the community.
regetation cover	decreased 🗸	increased	
pest/ disease control	decreased 🗸	increased	
			Crop rotation helps in the decreased of pest population.
andslides/ debris flows	increased	✓ decreased	
emission of carbon and greenhouse gases	increased 🗸	decreased	The technology requires manual cultivation with least or no machine
Breennouse gases			intervention, organic farming is a must with minimum usage of inorganic
			fertilizer, and biodiversity is also encourage. With that, the technology is
			believed to be effective to address sortion emission and groupbauge gases

Off-site impacts

believed to be effective to address carbon emission and greenhouse gases.

downstream flooding (undesired)	increased	✓ reduced
Benefits compared with establis	shment costs	
Short-term returns	very negative	✓ very positive
Long-term returns	very negative	✓ very positive
Benefits compared with mainte Short-term returns Long-term returns	very negative very negative	 very positive very positive

CLIMATE CHANGE

ADOPTION AND ADAPTATION

Percentage of land users in the area who have adopted the Technology single cases/ experimental

1-10% 10-50% ✓ more than 50%

Number of households and/ or area covered Almost all of local farmers practice the technology

Has the Technology been modified recently to adapt to changing conditions?

To which changing conditions?

climatic change/ extremes changing markets

labour availability (e.g. due to migration)

CONCLUSIONS AND LESSONS LEARNT

Strengths

- (1) Low production cost (2) Easiness to maintain (3) Effective erosion control measure (4) Increase farm yield and income (5) Diverse farm produce (6) Easiness to transfer (land user's view)
- (1) Increase farm income (2) Diverse farm produce (3) Easiness to establish, no need for technical knowledge to establish (4) Inexpensive (4) Organic farming (compiler's or other key resource person's view)

Of all those who have adopted the Technology, how many have did so without receiving material incentives?

Weaknesses/ disadvantages/ risks \rightarrow how to overcome

- (1) The technology is very good in terms of erosion control and improving lives of farmers in the community, but then the technology is not well-known for the whole country. → (1). The WOCAT database as an excellent information tool /or medium in the dissemination of this kind of technology, not only within Philippines but all over the world. These would highlight initiatives of the local farmers situated in remote areas in terms of managing the land productively and sustainably. (compiler's or other key resource person's view)
- (1) Pest infestation → (1) Pesticide application (land user's view)

REFERENCES

Compiler

Philippine Overview of Conservation Approaches and Technologies - philcatsecretariat@gmail.com

Resource persons

Girlie Urriza - land user Calixto Dela Pena - SLM specialist Baldwin Pine (baldwinmp@gmail.com) - Soil Specialist / GIS Specialist Jemar Raquid - Engineer Mharicar Torino - Engineer Aries Tayao - Engineer

Full description in the WOCAT database

https://qcat.wocat.net/en/wocat/technologies/view/technologies_1930/

Linked SLM data

n.a.

Documentation was faciliated by

Institution

- Bureau of Soils and Water Management
 Project
- Decision Support for Mainstreaming and Scaling out Sustainable Land Management

Key references

Links to relevant information which is available online