

Organic-Based System of Rice Intensification (SRI) Philippines

Intensifying the irrigated rice production while at the same time reducing farm inputs including seeds, fertilizer, and water.

The Organic-based system of rice intensification modifies the usual rice farming system in terms of seedling condition, planting distance, irrigation time and water requirement, and with the incorporation of organic fertilization scheme. Furthermore, integration of rice duck is carried out. This makes the farming system reduce its farm inputs leading to a lower production cost. With the utilization of organic fertilizers and natural concoctions, soil fertility and soil structure is improved. It was also observed that rice grown under SRI can tolerate strong winds. This type of rice production management is currently part of the Caritas Foundation's project, a non-government organization, called Sustainable Learning Agricultural Farm which promotes diversified-integrated organic farming systems. With this, other practices (i.e. rice-duck farming) are being integrated in some SRI areas. Integration of ducks helps in the weeding since it eats weeds as well as harmful insects. In addition, its droplets/manure served as organic fertilizer in the rice field.

The purpose of this technology is to promote better soil management as well as more efficient water management.

Under SRI, the following practices were implemented: In the land preparation stage, 25cm x 25cm plant spacing is made using the man-made implement. Intermittent irrigation is applied up to the panicle initiation stage with the following irrigation schedule: (1) 3 days after transplanting, (2) 9 days after transplanting, (3) 14 days after transplanting, and (4) 19 days after transplanting. The field is irrigated up to 5-cm water depth level per schedule. Fertilizer application includes compost and natural organic concoctions. This is applied on different crop stages.

The existing project sites are located in Samar experiencing Type IV climate wherein rainfall is more or less evenly distributed throughout the year. Most of the farmer practitioners of this technology belongs to the small scale and average type of land user.

left: farm practicing the System of Rice Intensification technology (Photo: Engr. Jemar G. Raquid) right: rice duck integration in the SRI technology (Photo: Engr. Djolly Ma. P. Dinamling)

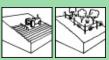
Location: Marabut, Samar Technology area: < 0.1 km2 (10 ha) Conservation measure: agronomic, management Stage of intervention: prevention of land degradation Origin: Developed externally / introduced through project, recent (<10 years ago) Land use type: Cropland: Annual cropping Climate: humid, tropics WOCAT database reference: T PHI062en Related approach: Compiled by: Philippine Overview of Conservation Approaches and Technologies, Bureau of Soils and Water Management Date: 2016-03-17 Contact person: Pastor Garcia, Visayas State University

Classification

Land use problems:

 soil fertility deterioration, water-use management (expert's point of view) soil fertility deterioration (land user's point of view)

Annual cropping


humid

Degradation

Chemical soil deterioration: fertility decline and reduced organic matter content

Conservation measure

Management: Major change in timing of activities Agronomic: Organic matter / soil fertility

Stage of intervention

Origin

Prevention Mitigation / Reduction Rehabilitation

Land users initiative

Experiments / Research Externally introduced: recent (<10 years ago)

Level of technical knowledge

Agricultural advisor Land user

Main causes of land degradation:

Direct causes - Human induced: soil management Indirect causes: population pressure

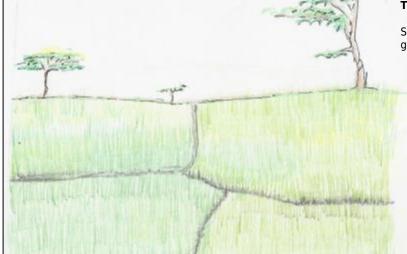
Main technical functions:

- increase in organic matter

500-1,000 1,000-10,000 >10,000

- increase / maintain water stored in soil

Secondary technical functions: - improvement of ground cover


- improvement of surface structure (crusting, sealing)
 improvement of topsoil structure (compaction)

Environment

Natural Environme	ent		
Average annual rainfa (mm)	II Altitude (m a.s.l.)	Landform	Slope (%)
> 4000 mm 3000-4000 mm 2000-3000 mm 1500-2000 mm 1000-1500 mm 500-750 mm 250-500 mm < 250 mm < 250 mm	> 4000 3000-4000 2500-3000 2000-2500 1500-2000 1000-1500 500-1000 100-500 <100	ridges mountain hill slopes footslopes valley floo	slopes gentle moderate rolling hilly rs steep very steep ater storage capacity: medium
0-20 20-50 50-80 80-120 >120	Soil texture: medium (loam) Soil fertility: medium Topsoil organic matter: medium	Availa	d water table: 5 - 50 m bility of surface water: good quality: good drinking water
Tolerant of climatic ex	ktremes: floods, strong winds		
Human Environme	nt		
Cropland per household (ha)	Land user: groups / community land users, common / average la and women Population density: 10-50 per Annual population growth: 1' Land ownership: individual, tit Water use rights: communal (Relative level of wealth: aver	Ind users, men all ind Acce sons/km2 mode % - 2% (eg o led high: organised) Mark age comm Mech mech	rtance of off-farm income: 10-50% of come: ss to service and infrastructure: arate: technical assistance, employment ff-farm), drinking water and sanitation; education, roads & transport set orientation: mixed (subsistence and hercial) manization: manual labour, animal traction, anised stock grazing on cropland:

Technical drawing

System of rice intensification for lowland rice growing. (Patricio A. Yambot)

Implementation activities, inputs and costs

Establishment activities	Establishment inputs	s and costs per ha	
 Planting of rice seeds ducks 	Inputs	Costs (US\$)	% met by land user
	Equipment		
	- ducks	177.78	%
	Agricultural		
	- seeds	18.67	100%
	TOTAL	196.45	100.00%

Maintenance/recurrent activities

- fertilizer application (compost)

- first plowing
- spraying of natural concoctions
- organic fertilizer application

Maintenance/recurrent inputs and costs per ha per year

Inputs	Costs (US\$)	% met by land user
Labour	213.32	100%
Equipment		-
- machine use	133.34	100%
Agricultural		
- fertilizer	66.67	100%
TOTAL	413.33	100.00%

Remarks:

harvestingweeding

clearing
transplanting
second plowing

Assessment

Impacts of the Technology		
Production and socio-economic benefits	Production and socio-economic disadvantages	
+++ increased crop yield		
+++ reduced demand for irrigation water		
+++ reduced expenses on agricultural inputs		
+++ increased farm income		
+ + reduced risk of production failure		
++ increased water availability / quality		
++ diversification of income sources		
++ decreased labour constraints		
Socio-cultural benefits	Socio-cultural disadvantages	
+++ community institution strengthening		
++ improved conservation / erosion knowledge		
++ improved food security / self sufficiency		
Ecological benefits	Ecological disadvantages	
+++ increased soil organic matter / below ground C		
++ improved excess water drainage		
++ reduced soil compaction		
+ reduced evaporation		
+ reduced salinity		
+ increased beneficial species		
Off-site benefits	Off-site disadvantages	
Contribution to human well-being / livelihoods		
+++ + Farmers become knowledgeable to a better rice farming management.		

Benefits /costs according to land user		
Benefits compared with costs	short-term:	long-term:
Establishment	positive	positive
Maintenance / recurrent	positive	positive

Acceptance / adoption:

100% of land user families have implemented the technology with external material support. 0% of land user families have implemented the technology voluntary. There is little trend towards (growing) spontaneous adoption of the technology.

Concluding statements

Strengths and \rightarrow how to sustain/improve	Weaknesses and \rightarrow how to overcome
Increase production yield → Intensify their Sustainable Learning Agricultural Farm program	Need for an adequate supply of organic inputs \rightarrow Sustainable production of organic inputs through composting methods
Improvement in crop growth and development $ ightarrow$	
Soil fertility improvement →	
Ease on weed management \rightarrow	

Copyright (c) WOCAT (2016)