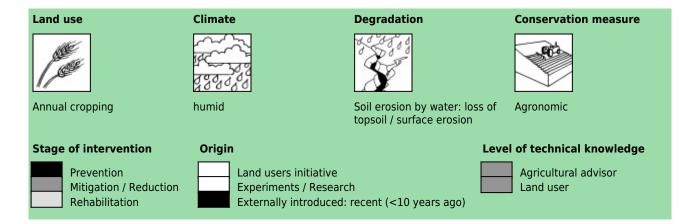


Planted Vegetative Strips (PVS) Philippines

Planting of economic crops/forages in strips along the contour to control soil loss through erosion.

The technology was introduced in the upland corn growing areas in Isabela province. The province is one of the main corn growing areas in the Philippines. As a means of minimizing/controlling soil erosion, economic crops like cassava and pineapple and forage grasses are planted in strips along the contour. Cassava and pineapple strips are established together with forage grass. When the cassava and pineapple is harvested, the forage will continue to provide protection against soil erosion. Planting of cassava is done yearly, while the replanting cycle for pineapple is 2 to 3 years. In some cases, forage grass is grown alone. It is more or less permanent and it is trimmed regularly. Overtime, natural terraces are formed and soil erosion is minimized. The system is advatageous in the economic benefit can be gained from both the alley crops is there on the contour strips.

left: Although the land slope is only about 8 percent, soil erosion is still serious during intense rainfall (Photo: Victor Crisologo, Jr)

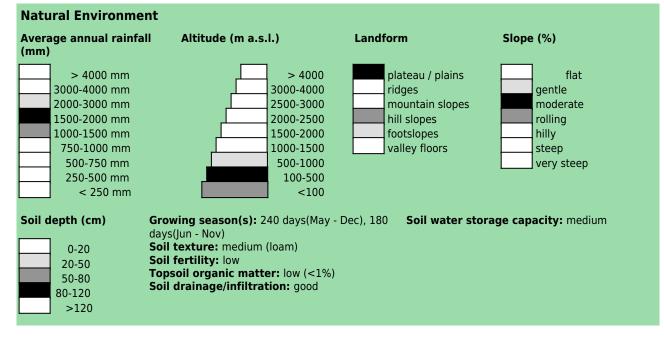

right: Planted vegetative strips (PVS) of cassava and napier grass for run-off and soil erosion control. When the cassava is harvested, the napier grass will continue to provide protection against erosion. The alleys in between PVS are usually grown to come (Photo: Jose D. Rondal)

Location: Isabela Region: Isabela Technology area: 2.5 km² Conservation measure: agronomic Stage of intervention: prevention of land degradation Origin: Developed externally / introduced through project, recent (<10 years ago) Land use type: Cropland: Annual cropping Climate: humid, tropics WOCAT database reference: T_PHI009en Related approach: Compiled by: Not registered Date: 2001-08-24

Classification

Land use problems:

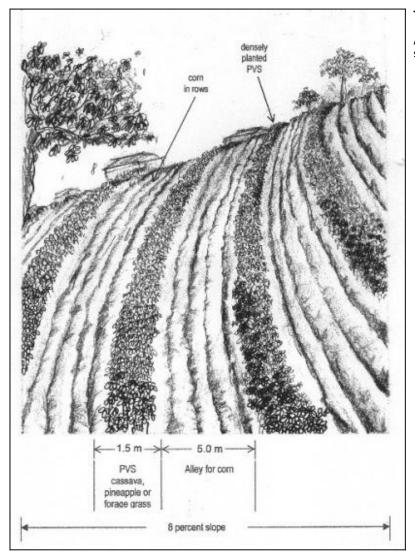
- Severe soil erosion and fertility decline caused by intensive cropping (soil mining) (expert's point of view) Productivity decline - increased application of fertilizers to obtain the same yield level. (land user's point of view)


Main causes of land degradation:

Main technical functions:

- control of dispersed runoff: impede / retard

Secondary technical functions: - reduction of slope angle


Environment

Human Environment

Cropland per household (ha)			
	<0.5		
	0.5-1		
	1-2		
	2-5		
	5-15		
	15-50		
	50-100		
	100-500		
	500-1,000		
	1,000-10,000		
	>10,000		

Population density: 50-100 persons/km2 Annual population growth: 2% - 3% Land ownership: individual, titled Land use rights: individual Relative level of wealth: average, which represents 1% of the land users; 10% of the total area is owned by average land users Importance of off-farm income: > 50% of all income: Trading, working in other farms, carpentry or a family member working abroad Access to service and infrastructure: Market orientation: mixed (subsistence and commercial) Mechanization: animal traction Livestock grazing on cropland:

Implementation activities, inputs and costs

Establishment activities	Establishment inputs ar	nd costs per ha	
- planting of alley crops - contouring	Inputs	Costs (US\$)	% met by land user
- planting of vegetative strips (PVS)	Labour	20.00	100%
	Equipment		
	- animal traction	12.00	100%
	Agricultural		
	- seeds	80.00	100%
	- seedlings	32.00	100%
	TOTAL	144.00	100.00%
Maintenance/recurrent activities	Maintenance/recurrent	inputs and costs pe	r ha per year
- Planting of vegetative strips (PVS) - Contouring - Planting of alley crops	Inputs	Costs (US\$)	% met by land user
- pruning/trimming (grass)	Labour	40.00	100%
- fertilization (pineapple)	TOTAL	40.00	100.00%

Remarks:

labor and inputs costs are the main factors involved.

The total area to be used for PVS which is approximately 2000 square meters.

Technical drawing

Artist impression about planted vegetative strips (PVS) technology (Boyet Yambot-BSWM)

Assessment

Impacts of the Technology				
Production and socio-economic benefits	Production and socio-economic disadvantages			
++ increased wood production				
+ fodder production/quality increase				
Socio-cultural benefits	Socio-cultural disadvantages			
+++ hational institution strengthening				
Ecological benefits	Ecological disadvantages			
++ increased soil moisture	+ Pests			
++ improved soil cover				
++ reduced soil loss				
+ increase in soil fertility				
Off-site benefits	Off-site disadvantages			
+ reduced downstream siltation				
Contribution to human well-being / livelihoods				

Benefits /costs according to land user				
	Benefits compared with costs	short-term:	long-term:	
	Establishment	neutral / balanced	positive	
	Maintenance / recurrent	slightly positive	positive	

Acceptance / adoption:

100% of land user families (20 families; 10% of area) have implemented the technology voluntary. estimates There is moderate trend towards (growing) spontaneous adoption of the technology. They can clearly see the benefit of adapting SWC practices in terms of added benefits (additional products, ecological)

Concluding statements

Strengths and \rightarrow how to sustain/improve	Weaknesses and \rightarrow how to overcome
Easy to establish and not capital intensive \rightarrow Local government unit (LGU) should encourage wider adaption of the technology through information educationan campaign (IEC)	Low effectivity of some PVS species/materials -> Supplementary control measures (mulching, temporary barriers)
Training and provision of planting materials/inputs	Yearly establishment (e.g. cassava) \rightarrow Consider perennial species as PVS (e.g. forage grass)
	Competition for nutrient and water \rightarrow Application of fertilizer and use of water harvesting techniques.
	PVS can harbor pests (e.g. rats) \rightarrow Proper maintenance/cleanliness
	Interfere with cultivation \rightarrow Align PVS in a straight manner if the contour allows
	Need additional capital \rightarrow Provisions of incentives (e.g. subsidized inputs)

Copyright (c) WOCAT (2015)